Contribution from the Department of Chemistry, Washington State University Pullman, Washington 99163, U.S.A.

The Crystal Structure of Tris(Dimethylammonium) Monochloride Tetrachlorocuprate(II), $[(CH_*)$, NH_{al}, Cl· CuCl,

R. **D. Willett and M. L. Larsen***

Received September 24, 1970

The crystal structure of tris-dimethylammonium monochloride tetrachlorocuprate(II), $[(CH₃)₂NH₂]$ ₃ $Cl \cdot Cu$ *Cl,, was determined using X-ray diffraction techniques. Crystals of the compound are orthorhombic, space* group Pnma, with cell dimensions $a=11.304$, $b=$ *15.638, and c = 9.957.*

The crystal structure was refined to a conventional R of 0.106. The structure consists of a distorted tetrahedral CuClr'- ion, a lattice chloride ion, and three dimethylammonium ions. The Dzd distortion of the CuCl/- ion is more pronounced than in previously reported structures. The Cu-Cl bond distances are all 2.230 ± 0.009 Å, but two Cl-Cu-Cl angles of $98 \pm$ 0.7° and two of 136 ± 0.8 ° were found. The dimethyl*ammonium groups are all involved in hydrogen bonding of the type N-H - - - Cl, and one bifurcated hydrogen bond was found. The lattice chloride ion and one dimethylammonium ion are disordered, as a result of hydrogen bonding.*

Introduction

As part of a study of the structural and spectral properties of anhydrous copper(I1) halide species, the crystal structure of the compound tris (dimethylammonium) monochloride tetrachlorocuprate(II) $[(CH₃)₂ NH₂$]₃Cl · CuCl₄ (henceforth DMA₃CuCl₅) has been determined. Interest in this compound was aroused by the observation that this compound, yellow at room temperature, turned green when cooled to liquid nitrogen temperature. This thermochromism is characteristic of a number of compounds such as $(NH₄)₂Cu Cl_4$,¹ (C₂H₅NH₃)₂CuCl₄,² (NH₃CH₂CH₂NH₃)CuCl₄,³ and $[(NH₃CH₂CH₂)₂NH₂]Cl$. CuCl₄,⁴ which contain a layer structure of square-planar $CuCl₄²⁻$ ions. These compounds undergo a phase transition which disrupts this laver structure, generally in the temperature range -20° to -60° C. Subsequent spectral and thermal investigations of DMA_3CuCl_5 have revealed that no major structural change occurs during the thermochromic change but found rather that the color change is due to a change in band width with temperature. Details of the spectral investigation will be published later.

• NIH Predoctoral Fellow.

(1) R.D. Willett, *J. Chem. Phys.*, 41, 2243 (1964).

(2) R.D. Willett and J.P. Steadman, *Inorg. Chim. Acta*, 4, 367 (1970).

(3) G.B. Birrell, G.L. Fergerson, and B. Zaslow, 1968 Winter

Meetin

Preparation and Data Collection. Crystals of $[(CH₃)_z$ $NH₂$]₃CuCl₅ are easily grown from absolute alcohol. A preparation was reported by Remy and Laves in 1933⁵ and by Shagisultanova, *et al.*⁶ The crystals grow as yellow irregular prisms, needles, or flat platelets depending on the conditions of development.

Analysis: Calcd: Cu, 16.78%; Cl, 46.80%: N. 11.09%; C, 19.00%; H, 6.33%. Found: Cu, 16.69%; Cl, 46.85%; N, 11.06%; c, 19.21%; H, 6.26%.

Examination of X-ray diffraction photographs revealed that the crystals are orthorhombic. The lattice constants, measured with Zr filtered Mo K_a (λ = 0.7107) radiation with a Picker diffractometer and G. E. single crystal orienter, were found to be $a = 11.304$ ± 0.010 Å, b = 15.638 ± 0.012 Å, and c = 9.957 \pm 0.006 Å. Systematic extinctions $[k+\ell=2n+1]$ for $\{Ok\ell\}$, h = 2n + 1 for $\{ hkO\}$] limited the choice of space group to Pnma or $Pn2₁a(Pna2₁)$. The calculated density $(Z=4)$ of 1.43 g/cc is in good agreement with the observed value of 1.41 g/cc measured using flotation.

A set of initial intensity data (746 observed reflections) was collected on a Weissenberg camera. Because difficulty was encountered in obtaining a satisfactory trial structure with these data and since decomposition of the crystal was suspected during the final stages of the data collection, it was decided to collect a set of data utilizing counter techniques. A total of 1072 reflections to a sin θ/λ limit of 45° were recorded from a crystal $(0.17 \text{ mm} \times 0.20 \text{ mm} \times 0.23)$ mm) on a Picker diffractometer equipped with a G. E. single crystal orienter. A θ -2 θ scan technique with 40 second scan, and 4 second background counts on each side of the peak was used. Of the reflections examined, 770 had a net count greater than 4.5% of the background. Those with a net count of less than this were assigned a net count of 4.5% of the background and treated as unobserved reflections. The standard deviation for each reflection was calculated by

 $\sigma(F) = |F| (TC + BG + 0.01NC^2 + 0.01BG^2)^n / 2NC$

where $TC = total$ count, $BG = background$ count, and $NC = net$ count. Absorption corrections were not made $(\mu = 19.3 \text{ cm}^{-1})$.

(51 H. Remy and G. Laves. Ber.. 66. 401 (1933). (6) G.A Shagisultanova. L.A. Il'yukevich. and L.I. Burdyko, *RUSS. 1. Inorg. Chem.. IO, 229 (1965).*

Willet, Larsen 1 *The Crystal Structure of Tris(Dimethylammonium) Monochloride Tetrachlorocuprate(II), [(CH,),NH2]3Cl - CuCl,*

Structure Determination. An initial attempt was made to solve the structure through the interpretation of a three-dimensional Patterson function. Computations, based on the film data, were made with the Sly and Shoemaker ERFR2 Fourier program.'

In searching for models consistent with the Patterson function in the space group Pnma, it was not possible to find a reasonable model in which the copper atoms were located at centers of inversion. Hence a model was chosen in which the copper atoms were located on the mirror planes perpendicular to the b axis and were tetrahedrally coordinated with four chlorine atoms. Refinement of this model with our chroning atoms. Remierment of this model with gave a value of $R = 0.77$ (see Table II for definition gave a value of $R_1 = 0.37$ (see Table II for definition of R_1).

Attempts to further elucidate the structure with these data were not successful.

Because of the aforementioned possibility of decomposition due to the hygroscopic nature of the com-

Table I. Statistical Distribution for the E's as Calculated from a Wilson Plot for DMA₃CuCl, a

Quantity	Film Data	Counter Data Calculated Calculated	Centric	Theoretical Theoretical Acentric	
Average					
magnitude of $ E $'s Average	0.82	0.731	0.798	0.886	
of E^2 Average	1.00 ^b	1.00 ^b	1.00	1.00	
$ E^2-1 $ οf	0.906	1.087	0.968	0.736	
$\frac{1}{2}$ $ E $'s $>$ 1	35.12	34.57	32.00	37.00	
$\frac{1}{2}$ $ E $'s $>$ 2	3.33	4.81	5.00	1.80	
% E 's $>$ 3	0.0	0.0	0.30	0.01	

a The E's are normalized structure factors defined by:

$$
E_{hkl} = \frac{|F_{hkl}|}{(\sum_{i=1}^{n} f_i)^n}
$$

 $w = \frac{1}{2}$ at $w = \frac{1}{2}$ at over the sum is over the unit cell. b research is over the j atom in $R_{\text{eff}} = 1.00$.

Table II. Final Parameters for DMA₂CuCl, a

pound, the set of counter data was collected at this point. A distribution of intensities was calculated σ distribution of intensities was calculated σ determine the correct space group. With these data, α actement the correct space group. While these data, s indicated in Table 1, the evidence is quite strong that the structure is centrosymmetric. The Patterson function was recalculated; its features were very similar to the initial Patterson, but peak resolution was much better. The same model of a tetrahedral ion was used and a value of $R = 0.27$ was obtained for ras used and a value of $N_1 = 0.27$ was obtained for the 620 strongest reflections. A Fourier synthesis revealed the location of the two equivalent dimethylammonium groups and the fifth chlorine atom at a center of inversion $(1/2,0,0)$. Refinement of these positions lowered the value of $R₁$ to 0.17. However, two features of the structure still were not satisfactory. The thermal parameter for the fifth chlorine atom was too large to be physically reasonable and this ras too large to be physically reasonable and this tom appeared as a peak of only o cicenons on an tection density map. The approximate location of the mirror plane. Attempts to refine structure models the mirror plane. Attempts to refine structure models
with the nitrogen atom and both carbon atoms on the mirror plane, or with only the nitrogen atom on the mirror plane, or with only the introgent atom on un untivi pre Examination of a difference Fourier synthesis re-

vealed maxima on both sides of the mirror plane at the location of the nitrogen atom. Hence, a disordered model was postulated in which this nitrogen was present at half-occupance on each side of the mirror plane. Anisotropic thermal refinement of the heavy atoms dropped the R_1 value to 0.093 for the 620 strongest reflections and although the β_{11} and β_{33} components of the temperature factor for the lattice chloride ion were reasonable, the β_{22} was much too large. Examination of a difference Fourier¹⁰ in the region of this chloride ion revealed maxima at either side of $(1/2,0,0)$ along the y-direction. A disordered model with equal occupancy factors of 0.5 was postulated. Examination of the difference Fourier allowed the determination of the y-parameter of this chloride ion to be approximately 0.02. It was not possible to simultaneously refine both the y-parameter and the

$$
R_1 = \frac{\Sigma ||F_{obs}|-|F_{cald}|}{\Sigma |F_{obs}|} = 0.106
$$

^a Standard deviations on the least significant digit are given in parenthesis.

(7) W.G. Sly, D.P. Shoemaker, and J.H. Van den Hende, ESSO (9) R. Dewar and A. Stone, FORTRAN Symbolic Addition Programs, esearch and Engineering Report CHRL-22M-62 (1962).
(8) W.R. Busing, K.O. Martin, and H.A. Levy, A Fortran Crystallo (10) F.R. Ahmed, S.R. Hall, M.E. Pippy, and C.P. Saundcrson, raphic Least Squares Program, U.S. Atomic Energy Commission Re- NRC Crystallographic Programs for the IBM/30

$$
R_{\scriptscriptstyle 3} \! = \! \frac{\Sigma (|F_{\scriptscriptstyle \textrm{obs}}| \! - \! |F_{\scriptscriptstyle \textrm{calc}}|)^2}{\Sigma |F_{\scriptscriptstyle \textrm{obs}}|^2} \! = \! 0.092
$$

 β_{22} thermal parameter for this chloride ion. However, the R_1 values for a series of least squares calculations ment of all data gave a value of $R = 0.106$ for the 770 with fixed y-parameter indicated the initial choice of observed reflections. The final parameters are lis

 $y=0.02$ was the best value. Final anisotropic refinement of all data gave a value of $R=0.106$ for the 770

Table III. Observed and Calculated Structure Factors for DMA,CuCl, a

^a The columns contain k, ℓ 10 $|F_{obs}|$, and 10 F_{calc} . The unobserved reflections are denoted by a negative $|F_{obs}|$.

Willet, Larsen | *The Crystal Structure of Tris(Dimethylammonium) Monochloride Tetrachlorocuprate(II),* [(CH₃)₂NH₂]₃Cl: CuCl₄

Table IV. Interatomic Bond Distances and Bond Angles in DMA₃CuCl₅

Bond Distances			Bond Angles				
Bond ^a	Distance (A)	Bond	Distance (A)	Angle ^a	Value(°)	Angle	Value(°)
$Cu(1)-Cl(2)$ $Cu(1)-Cl(3)$ $Cu(1)-Cl(4)$ $Cu(1)-Cl(4')$	2.232(6) $-2.229(9)$ 2.229(6)	$N(7) - C(6)$ $N(7)$ -C(8) $N(11)-C(9)$ $N(11) - C(10)$	1.45(3) 1.37(4) 1.41(3) 1.54(4)	$Cl(2)$ -Cu(1)-Cl(3) $Cl(2)$ -Cu(1)-Cl(4) $Cl(3)$ -Cu(1)-Cl(4) $Cl(4)-Cu(1)-Cl(4')$	136.1(2) 97.7(1) 98.6(1) 135.5(2)	$C(6)$ -N(7)- $C(8)$ $C(9)$ -N(11)-C(10)	121.3(6) 112.9(2.8)

⁴ A prime denotes an atom related by the mirror plane at $y = \frac{1}{4}$.

Table V. Hydrogen Bond Ditacne and Angle in DMA₃CuCl₅

Hydrogen Bond Distance				Hydrogen Bond Angles			
Bond	Distances (Å)	Bond	Distance (A)	Angle	Value(°)	Angle	Value(°)
$Cl(3)-N(7)$ $Cl(4)-N(7)$ $Cl(5)$ -N (7)	3.29(2) 3.24(3) 3.45(3)	$Cl(2)$ -N (11) $Cl(5)$ -N (11)	3.13(3) 3.19(4)	$Cl(3)-N(7)-C(6)$ $Cl(3)$ -N (7) -C (8) $Cl(4)-N(7)-C(6)$ $Cl(4)-N(7)-C(8)$ $Cl(5)-N(7)-C(6)$ $Cl(5)-N(7)-C(8)$	88.1(1.4) 149.6(1.6) 126.0(1.8) 91.5(1.9) 100.7(1.3) 101.7(1.6)	$Cl(2)$ -N (11) -C (9) $Cl(2)-N(11)-C(10)$ $Cl(5)-N(11)-C(9)$ $Cl(5)-N(11)-C(10)$	101.8(2.0) 101.4(1.5) 108.6(1.7) 106.0(1.5)

in Table II, observed and calculated structure factors $\frac{1}{10}$ and $\frac{1}{10}$, $\$ are tabulated in Table III, and principal interatomic distances and angles are given in Tables TV and \mathbf{v} . The geometry of the Cuch_4 fon is shown in Figure 1 and right ϵ shows the relation of the edge in the t the W is the University Calcompany C $\frac{1}{2}$ the original state charges $\frac{1}{2}$ randomly produced $\frac{1}{2}$ $\sum_{n=1}^{\infty}$ in $\sum_{n=1}^{\infty}$ $\sum_{n=1}$ FIUL PLOGRAM (UNTER). A VIEW

Figure 1. Stereoscopic Drawing of the CuCl,²⁻Ion.

Figure 2. Illustration of the Environment of the $CuCl₄²-Ion$.

(11) W.R. Busing, K.O. Martin, and H.A Levy, *A FORTRAN Cryatlographic Function and Error Program*, U.S. Atomic Energy Commis

Discussion

This crystal structure analysis has established the $\frac{1}{10}$ crystal structure analysis has established the best representchemical formula of DMA_3CuCl_5 to be best represented by $[(CH₃)₂NH₂]$ ₃Cl · CuCl₄. It consists of discrete CuCl₄²⁻ and Cl⁻ ions hydrogen-bonded to $(CH_3)_2NH_2^+$ ions to form an infinite three-dimensional network. The CuCl²⁻ ion has essentially D_{2d} symmetry, corresponding to the familiar «flattened» tetrahedral coordination reported in $Cs_2CuCl₄¹³$ and $[(CH₃)₄N]₂Cu Cl₄$ ¹⁴ One of the DMA ions and the lattice chloride ion were found to be distributed in a disorder manner between equivalent sites, thus providing for more efficient hydrogen-bonding than would be present in the corresponding ordered centrosymmetric structure.

Figure 3. Unit Cell Packing Diagram for $[(CH_3)_2NH_2]$, $CI \cdot CuCl$. Projection along $0($

 T_1 is the CUC in its summarized in the CUC is summarized in the CUC in its summarized in the CUC is summarized in the T_2 The geometry of the CuCl₄ from is summarized in T_{max} Table IV and Figure 1. The Cu-Cl bond distances average $2.230 \text{ Å} \pm .007 \text{ Å}$, all three independent distances being the same length to within one-half a

(12) C.K. Johnson, *A FORTRAN Thermal Ellipsoid Plot Program for Crystal Srrucfure Illustrations,* Oak Ridge National Laboratory, Oak Ridge, Tennessee (1965). ge, Tennessee (1965).
(13) L. Helmholz and R.F. Kruh, *J. Am. Chem. Soc., 74,* 1176 (1952).

Inorganica Chimicu Acta 1 5 : *2* j *]une, 1971*

	$[N(CH_3)_4]_2$ CuCl ₄					
	Cs ₂ CuCl ₄	[010] data	[001] data	DMA_3CuCl_5		
$Cu-Cl(1)$	2.229	2.18Å	2.22 _A	2.28 _A		
$Cu-Cl(2)$	2.229	2.25	2.20	2.24		
$Cu-Cl(3)$	2.232	2.18	2.23	2.23		
$Cl(1)$ -Cu-Cl (2)	136.1	124.9°	129.8°	131.5°		
$Cl(1)$ -Cu-Cl (3)	97.7	102.5	99.6	99.4		
$Cl(2)$ -Cu-Cl (3)	98.6	102.9	102.2	101.5		
$Cl(3)$ -Cu-Cl $(3')$	135.5	123.3	127.1	127.4		

Table VI. Bond Lengths and Angles in the CuCl i^2 - Ion

standard deviation. The bond angles fall into two standard deviation. The bond angles rail into two groups, one in which the two angles are compressed from idealized tetrahedral angles to approximately 98°, while in the other group the two angles have opened up to 136°. The two larger angles are equal within three standard deviations at 136.1 ± 0.2 ° and $135.5 \pm$ 0.2 °. The two shorter angles lie outside of the three standard deviation criteria, the observed values being standard deviation criteria, the observed values being $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ and $\frac{1}{2}$ $\frac{1}{2$ $CuCl₄²⁻$ ion is displaced 0.011 Å from the copper atom in the direction of the bisector of the $Cl(4)$ -Cu-Cl(4') bond angle. $C = C \cdot C$

Comparison of the comparation of the CuCl₄ floridate in C_1 of C_2 and C_3 and in DMA in Cs_2CuCl_4 and $[(CH_3)_4N]_2CuCl_4$ with that in DMA₃-CuCl₅, given in Table VI, shows that the CuCl₄²⁻ ion in DMA_3CuCl_5 is closest to D_{2d} symmetry. This is the symmetry expected if the ion is considered to be distorted from T_d symmetry by a Jahn-Teller mechanism or from D_{4h} symmetry by coulombic and Van der Waal's repulsion forces between the chloride ions. Thus one is tempted to infer that the interionic steric forces are smaller in DMA_3CuCl_5 than in the other two compounds. U compounds.
Lead in the two independent DMA is all four C-N

In the two independent DMA tons, all four $C-N$ distances are within three standard deviations of the accepted C-N single bond distance of 1.47 Å . Although standard deviations are quite high (.03 or .04) Å) and the individual C-N distances range from 1.37 to 1.54 Å, the average C-N distances is 1.44 Å. Both $C-N-C$ bond angles are larger than the tetrahedral value of 109.4 Å. The angle for the DMA ion located in general position, $C(6)$ -N(7)-C(8), is considerably larger at 121.3 ± 0.6 °. In the disordered DMA ion, this angle is 112.9 ± 2.8 °. The large standard deviation probably arises from the fact that in the least squares refinement the two carbon atoms were restricted to lie on the mirror plane although this is not required for a disordered molecule. The final difference Fourier gave no indication of significant displacement of either of these carbon atoms from the mirror plane, nor did it give definitive evidence about the location of the hydrogen atoms.

Another important aspect of the structure is the disorder found for one of the DMA ions and the lattice chloride ion. The cause of the disordering is easily understood when the hydrogen bonding in the structure is examined. If $N(11)$ were located on the mirror plane and $Cl(5)$ on the center of inversion, the N-Cl distance would be over 4.0 Å, much too long
for hydrogen bonding. In addition, the C-N-Cl an-

gles would not be favorable for hydrogen bonding. gies would not be lavorable for hydrogen bonding. By tipping the DMA ion away from the mirror plane and displacing the chloride ion toward the DMA ion as shown in Figure 4, a N-Cl distance of 3.19 Å is obtained, a distance that is quite representative of $\frac{1}{\sqrt{2}}$ - $\frac{1}{\sqrt{2}}$ a distance that is quite representative of t^* - - - C_L hydrogen bond distances. At the same the condition $\mathcal{L}(3)$ and $\mathcal{L}(10)$ and $\mathcal{L}(10)$ respectively volue aligies how reach values (109 and 100 respectively) gen bond. This tipping of the DMA ion also produces favorable bond angles for the body for the hydrogen bond from $N(11)$ to $C_1(2)$. The disorder thus allows this DMA $\frac{N(11)}{N}$ to $\frac{C_1}{2}$, the disorder thus allows this DMA

Pigure 4. Schematic Illustration of Two Possible Hydrogen Bonding Arrangements for the Disordered Chloride and Dimethylammonium Ions.

ion in general positions, as evidenced by shorter α foll in general positions, as evidenced by shorter $N+CI$. distances and C-N-Cl angles closer to 109°. This disorder is almost certainly of the dynamic type. Predisorder is almost certainly of the dynamic type. liminary differential thermal analysis indicated two minor phase pransitions below room temperature, one of which may be due to the onset of some type of hindered rotation of the methyl groups while the other is presumably associated with an order-disorder phenomena in the DMA $-$ - Cl hydrogen bond system. Preliminary broadline NMR spectra support this conclusion. The DMA ion in general position forms a bifurcated hydrogen bond to $Cl(3)$ and $Cl(4)$ with N –Cl distances of 3.29 and 3.24 Å. The hydrogen bond from this DMA ion to the lattice chloride ion is much weaker, the $N(7)$ -Cl(5) distance being 3.45 Å.

Acknowledgments. This research work was supported, *in particular ported*, in part, by PRF Grant No. 3152-A3.