Contribution from the Department of Chemistry, Washington State University Pullman, Washington 99163, U.S.A.

The Crystal Structure of Tris(Dimethylammonium) Monochloride Tetrachlorocuprate(II), [(CH₂)₂NH₂]₂Cl·CuCl₄

R. D. Willett and M. L. Larsen*

Received September 24, 1970

The crystal structure of tris-dimethylammonium monochloride tetrachlorocuprate(II), $[(CH_3)_2NH_2]_3Cl \cdot Cu$ -Cl₄, was determined using X-ray diffraction techniques. Crystals of the compound are orthorhombic, space group Pnma, with cell dimensions a=11.304, b=15.638, and c = 9.957.

The crystal structure was refined to a conventional R of 0.106. The structure consists of a distorted tetrahedral $CuCl_4^{2-}$ ion, a lattice chloride ion, and three dimethylammonium ions. The D_{2d} distortion of the $CuCl_{4}^{2-}$ ion is more pronounced than in previously reported structures. The Cu-Cl bond distances are all 2.230 ± 0.009 Å, but two Cl-Cu-Cl angles of $98 \pm$ 0.7° and two of $136 \pm 0.8^{\circ}$ were found. The dimethylammonium groups are all involved in hydrogen bonding of the type N-H --- Cl, and one bifurcated hydrogen bond was found. The lattice chloride ion and one dimethylammonium ion are disordered, as a result of hydrogen bonding.

Introduction

As part of a study of the structural and spectral properties of anhydrous copper(II) halide species, the crystal structure of the compound tris (dimethylammonium) monochloride tetrachlorocuprate(II) [(CH₃)₂ - NH_2]₃Cl · CuCl₄ (henceforth DMA₃CuCl₅) has been determined. Interest in this compound was aroused by the observation that this compound, yellow at room temperature, turned green when cooled to liquid nitrogen temperature. This thermochromism is characteristic of a number of compounds such as (NH₄)₂Cu- Cl_4 ¹ ($C_2H_5NH_3$)₂CuCl₄² ($NH_3CH_2CH_2NH_3$)CuCl₄³ and [(NH₃CH₂CH₂)₂NH₂]Cl. CuCl₄,⁴ which contain a layer structure of square-planar CuCl42- ions. These compounds undergo a phase transition which disrupts this layer structure, generally in the temperature range -20° to -60°C. Subsequent spectral and thermal investigations of DMA₃CuCl₅ have revealed that no major structural change occurs during the thermochromic change but found rather that the color change is due to a change in band width with temperature. Details of the spectral investigation will be published later.

N1H Predoctoral Fellow.
(1) R.D. Willett, J. Chem. Phys., 41, 2243 (1964).
(2) R.D. Willett and J.P. Steadman, Inorg. Chim. Acta, 4, 367 (1970).
(3) G.B. Birrell, G.L. Fergerson, and B. Zaslow, 1968 Winter Meeting of the American Crystallographic Association, Tuscon, Arizona.
(4) B. Zaslow and G.L. Fergerson, Chem. Comm., 822 (1967).

Preparation and Data Collection. Crystals of [(CH₃)₂- NH_2]₃CuCl₅ are easily grown from absolute alcohol. A preparation was reported by Remy and Laves in 1933,⁵ and by Shagisultanova, et al.⁶ The crystals grow as yellow irregular prisms, needles, or flat platelets depending on the conditions of development.

Analysis: Calcd: Cu, 16.78%; Cl, 46.80%; N, 11.09%; C, 19.00%; H, 6.33%. Found: Cu, 16.69%; Cl, 46.85%; N, 11.06%; C, 19.21%; H, 6.26%.

Examination of X-ray diffraction photographs revealed that the crystals are orthorhombic. The lattice constants, measured with Zr filtered Mo K_{α} (λ = 0.7107) radiation with a Picker diffractometer and G. E. single crystal orienter, were found to be a = 11.304 ± 0.010 Å, b = 15.638 ± 0.012 Å, and c = 9.957 \pm 0.006 Å. Systematic extinctions $[k+\ell=2n+1]$ for $Ok\ell$, h=2n+1 for hkO [] limited the choice of space group to Pnma or Pn2₁a(Pna2₁). The calculated density (Z=4) of 1.43 g/cc is in good agreement with the observed value of 1.41 g/cc measured using flotation.

A set of initial intensity data (746 observed reflections) was collected on a Weissenberg camera. Because difficulty was encountered in obtaining a satisfactory trial structure with these data and since decomposition of the crystal was suspected during the final stages of the data collection, it was decided to collect a set of data utilizing counter techniques. A total of 1072 reflections to a sin θ/λ limit of 45° were recorded from a crystal (0.17 mm \times 0.20 mm \times 0.23 mm) on a Picker diffractometer equipped with a G. E. single crystal orienter. A θ -2 θ scan technique with 40 second scan, and 4 second background counts on each side of the peak was used. Of the reflections examined, 770 had a net count greater than 4.5% of the background. Those with a net count of less than this were assigned a net count of 4.5% of the background and treated as unobserved reflections. The standard deviation for each reflection was calculated by

 $\sigma(F) = |F|(TC + BG + 0.01NC^2 + 0.01BG^2)^{n}/2NC$

where TC = total count, BG = background count, and NC=net count. Absorption corrections were not made ($\mu = 19.3 \text{ cm}^{-1}$).

(5) H. Remy and G. Laves, Ber., 66, 401 (1933).
(6) G.A. Shagisultanova, L.A. Il'yukevich, and L.I. Burdyko, Russ.
J. Inorg. Chem., 10, 229 (1965).

Willet, Larsen | The Crystal Structure of Tris(Dimethylammonium) Monochloride Tetrachlorocuprate(II), [(CH₃)₂NH₂]₃Cl · CuCl₄

Structure Determination. An initial attempt was made to solve the structure through the interpretation of a three-dimensional Patterson function. Computations, based on the film data, were made with the Sly and Shoemaker ERFR2 Fourier program.⁷

In searching for models consistent with the Patterson function in the space group Pnma, it was not possible to find a reasonable model in which the copper atoms were located at centers of inversion. Hence a model was chosen in which the copper atoms were located on the mirror planes perpendicular to the b axis and were tetrahedrally coordinated with four chlorine atoms. Refinement of this model with the Busing, Martin, and Levy least squares program8 gave a value of $R_1 = 0.37$ (see Table II for definition of R_1).

Attempts to further elucidate the structure with these data were not successful.

Because of the aforementioned possibility of decomposition due to the hygroscopic nature of the com-

Table I. Statistical Distribution for the E's as Calculated from a Wilson Plot for DMA₃CuCl₅^a

Quantity	Film Data Calculated	Counter Data Calculated	Theoretical Centric	Theoretical Acentric
Average magnitude				
of [E]'s Average	0.82	0.731	0.798	0.886
of E ² Average	1.00 ^b	1.00 ^b	1.00	1.00
of E ² -1	0.906	1.087	0.968	0,736
% E 's>1	35.12	34.57	32.00	37.00
% E 's>2	3.33	4.81	5.00	1.80
% E 's>3	0.0	0.0	0.30	0.01

^a The E's are normalized structure factors defined by:

$$E_{hkl} = \frac{|F_{hkl}|}{(\sum_{j=1}^{n} f_j^2)^{w}}$$

where the sum is over the j atom in the unit cell. ^b Rescaled so the average $|E|^2 = 1.00$.

Table II. Final Parameters for DMA₃CuCl₅^a

pound, the set of counter data was collected at this point. A distribution of intensities was calculated to determine the correct space group. With these data, as indicated in Table I, ⁹ the evidence is quite strong that the structure is centrosymmetric. The Patterson
function was recalculated; its features were very simi-
lar to the initial Patterson, but peak resolution was
much better. The same model of a tetrahedral ion was used and a value of $R_{\rm c} = 0.27$ was obtained for
the 620 strongest reflections. A Fourier synthesis re-
vealed the location of the two equivalent dimethyl-
ammonium groups and the fifth chlorine atom at a
center of inversion $(1/2,0,0)$. Refinement of these
two features of the structure still were not satisfacto-
ry. The thermal parameter for the fifth chlorine atom
was too large to be physically reasonable and this
atom appeared as a peak of only 6 electrons on an
electron density map. The approximate location of
the mirror plane Attempts to refine structure models
with the nitrogen atom and both carbon atoms on
the mirror plane, or with only the nitrogen atom on
the mirror plane and a carbon atom on each side were
unsuccessful.

Examination of a difference Fourier synthesis revealed maxima on both sides of the mirror plane at the location of the nitrogen atom. Hence, a disordered model was postulated in which this nitrogen was present at half-occupance on each side of the mirror plane. Anisotropic thermal refinement of the heavy atoms dropped the R₁ value to 0.093 for the 620 strongest reflections and although the β_{11} and β_{33} components of the temperature factor for the lattice chloride ion were reasonable, the β_{22} was much too large. Examination of a difference Fourier¹⁰ in the region of this chloride ion revealed maxima at either side of (1/2,0,0) along the y-direction. A disordered model with equal occupancy factors of 0.5 was postulated. Examination of the difference Fourier allowed the determination of the y-parameter of this chloride ion to be approximately 0.02. It was not possible to simultaneously refine both the y-parameter and the

Atom	Х	Y	Z	β11	β22	β ₃₃	β ₁₂	β13	β ₂₃
Cu(1)	0.4702(2)	0.25	0.5144(2)	0.0070(2)	0.0028(1)	0.0074(2)	0.0	0.0010(2)	0.0
Cl(2)	0.6417(5)	0.25	0.4034(5)	0.0065(5)	0.0054(3)	0.0125(7)	0.0	0.0015(5)	0.0
Cl(3)	0.4145(6)	0.25	0.7272(5)	0.0162(8)	0.0054(3)	0.0097(6)	0.0	0.0043(6)	0.0
C1(4)	0.4126(4)	0.1181(2)	0.4604(4)	0.0131(5)	0.0041(2)	0.0165(6)	-0.0019(2)	0.0024(4)	-0.0025(3)
Cl(5)	0.5	0.02	0.0	0.0241(13)	0.0069(7)	0.0208(10)	0.0001(9)	0.0010(10)	0.0022(8)
C(6)	0.1979(16)	0.0936(10)	0.8093(16)	0.0143(22)	0.0043(8)	0.0181(22)	0.0023(11)	0.0061(18)	0.0024(12)
N(7)	0.3002(17)	0.0567(7)	0.7438(17)	0.0292(33)	0.0032(7)	0.0302(27)	0.0007(11)	0.0227(25)	-0.0009(11)
C(8)	0.3013(17)	0.0271(10)	0.7038(15)	0.0181(27)	0.0062(10)	0.0144(22)	0.0044(14)	0.0086(19)	-0.0028(12)
C (9)	0.4315(28)	0.25	0.1213(25)	0.0127(38)	0.0160(31)	0.0138(36)	0.0	0.0029(27)	0.0
C(10)	0.6329(21)	0.25	0.0269(27)	0.0131(23)	0.0131(23)	0.0206(42)	0.0	0.0029(28)	0.0
N(11)	0.5406(26)	0.2068(17)	0.1194(24)	0.0104(30)	0.0084(19)	0.0161(36)	0.0004(20)	0.0023(28)	0.0009(19)

$$R_1 = \frac{\Sigma ||F_{obs}| - |F_{cald}|}{\Sigma |F_{obs}|} = 0.106$$

^a Standard deviations on the least significant digit are given in parenthesis.

(7) W.G. Sly, D.P. Shoemaker, and J.H. Van den Hende, ESSO Research and Engineering Report CHRL-22M-62 (1962).
(8) W.R. Busing, K.O. Martin, and H.A. Levy, A Fortran Crystallographic Least Squares Program, U.S. Atomic Energy Commission Report ORNL-TM-305 (1962).

$$R_{3} = \frac{\Sigma (|F_{obs}| - |F_{calc}|)^{2}}{\Sigma |F_{obs}|^{2}} = 0.092$$

(9) R. Dewar and A. Stone, FORTRAN Symbolic Addition Programs, University of Chicago (1965).
 (10) F.R. Ahmed, S.R. Hall, M.E. Pippy, and C.P. Saunderson, NRC Crystallographic Programs for the IBM/360 Series, National Re-search Council, Ottawa, Canada, May, 1966.

 β_{22} thermal parameter for this chloride ion. However, the R₁ values for a series of least squares calculations with fixed y-parameter indicated the initial choice of y=0.02 was the best value. Final anisotropic refinement of all data gave a value of R=0.106 for the 770 observed reflections. The final parameters are listed

Table III. Observed and Calculated Structure Factors for DMA₃CuCl₅ ^a

246810246337911350246810246810246135791130246810213579110246810135790246 123456789101123456012345678910112345607891011234560789101123456	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 307 286 28 9 4 303 286 9 4 4 303 286 9 4 4 303 286 9 4 4 303 286 11 4 4 324 207 11 13 4 327 295 12 13 4 122 -131 13 4 4 127 -131 13 4 4 127 -131 13 4 4 173 -214 4 4 4 -111 17 5 4 -109 11 6 6 126 27 75 5 457 466 9 5 246 287 786 5 246 217 518 5 247 324 14 5 247 324 14 5 247 325 34 5 247 322 1 5 248 229 1 5 247 323 14 5 243 39 5 5 243	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 190 -44 5 1 -96 1 5 1 190 230 7 1 120 100 1 1 120 100 1 1 110 10 1 1 110 10 1 1 110 200 2 2 345 357 4 2 122 135 2 2 1021 101 7 2 122 155 13 2 1022 1017 7 2 123 155 13 3 104 140 140 2 102 202 202 3 134 145 10 2 104 -105 13 3 334 458 9 3 344 458 9 3 144	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
--	---	---	---	---	---	--	---	--	---

^a The columns contain k, ℓ 10|F_{obs}|, and 10 F_{calc}. The unobserved reflections are denoted by a negative |F_{obs}|.

Willet, Larsen | The Crystal Structure of Tris(Dimethylammonium) Monochloride Tetrachlorocuprate(11), [(CH₃)₂NH₂]₃Cl · CuCl₄

Table IV. Interatomic Bond Distances and Bond Angles in DMA₃CuCl₅

	Bond Dista	nces			Bond Angles			
Bond ^a	Distance (Å)	Bond	Distance (Å)	Angle ^a	Value(°)	Angle	Value(°)	
Cu(1)-Cl(2)	2.232(6)	N(7)-C(6)	1.45(3)	Cl(2)-Cu(1)-Cl(3)	136.1(2)	C(6)-N(7)-C(8)	121.3(6)	
Cu(1)-Cl(3) Cu(1)-Cl(4) Cu(1)-Cl(4')	2.229(9)	N(1)-C(8) N(11)-C(9) N(11)-C(10)	1.37(4) 1.41(3) 1.54(4)	Cl(2)-Cu(1)-Cl(4) Cl(3)-Cu(1)-Cl(4) Cl(4)-Cu(1)-Cl(4')	98.6(1) 135.5(2)	C(9) - N(11) - C(10)	112.9(2.8)	

^a A prime denotes an atom related by the mirror plane at $y = \frac{1}{4}$.

Table V. Hydrogen Bond Ditacne and Angle in DMA₃CuCl₅

	Hydro	gen Bond Dis	Hydrogen Bond Angles				
Bond	Distances (Å)	Bond	Distance (Å)	Angle	Value(°)	Angle	Value(°)
Cl(3)-N(7) Cl(4)-N(7) Cl(5)-N(7)	3.29(2) 3.24(3) 3.45(3)	Cl(2)-N(11) Cl(5)-N(11)	3.13(3) 3.19(4)	Cl(3)-N(7)-C(6) Cl(3)-N(7)-C(8) Cl(4)-N(7)-C(6) Cl(4)-N(7)-C(8) Cl(5)-N(7)-C(6) Cl(5)-N(7)-C(8)	88.1(1.4) 149.6(1.6) 126.0(1.8) 91.5(1.9) 100.7(1.3) 101.7(1.6)	Cl(2)-N(11)-C(9) Cl(2)-N(11)-C(10) Cl(5)-N(11)-C(9) Cl(5)-N(11)-C(10)	101.8(2.0) 101.4(1.5) 108.6(1.7) 106.0(1.5)

in Table II, observed and calculated structure factors are tabulated in Table III, and principal interatomic distances and angles¹¹ are given in Tables IV and V. The geometry of the $CuCl_4^{2-}$ ion is shown in Figure 1 and Figure 2 shows the relation of the CuCl₄²⁻ to its nearest neighbors. These illustrations were made on the Washington State University CalComp plotter using the Oak Ridge FORTRAN Thermal-Ellipsoid Plot program (ORTEP).¹² A view of the contents of the unit cell is shown in Figure 3.

Figure 1. Stereoscopic Drawing of the CuCl4²⁻Ion.

Figure 2. Illustration of the Environment of the CuCl₄²⁻Ion.

(11) W.R. Busing, K.O. Martin, and H.A. Levy, A FORTRAN Cry-stallographic Function and Error Program, U.S. Atomic Energy Commis-sion eRport ORNL-TM-306 (1964).

Discussion

This crystal structure analysis has established the chemical formula of DMA₃CuCl₅ to be best represented by [(CH₃)₂NH₂]₃Cl · CuCl₄. It consists of discrete CuCl₄²⁻ and Cl⁻ ions hydrogen-bonded to (CH₃)₂NH₂⁺ ions to form an infinite three-dimensional network. The CuCl²⁻ ion has essentially D_{2d} symmetry, corresponding to the familiar «flattened» tetrahedral coordination reported in Cs2CuCl413 and [(CH3)4N]2Cu-Cl₄.¹⁴ One of the DMA ions and the lattice chloride ion were found to be distributed in a disorder manner between equivalent sites, thus providing for more efficient hydrogen-bonding than would be present in the corresponding ordered centrosymmetric structure.

Unit Cell Packing Diagram for [(CH₃)₂NH₂]₃ Figure 3. Cl CuCl. Projection along 0(10) direction. The c-axis is vertical, the a-axis is horizontal.

The geometry of the $CuCl_4^{2-}$ ion is summarized in Table IV and Figure 1. The Cu-Cl bond distances average 2.230 $Å \pm .007$ Å, all three independent distances being the same length to within one-half a

(12) C.K. Johnson, A FORTRAN Thermal Ellipsoid Plot Program for Crystal Structure Illustrations, Oak Ridge National Laboratory, Oak Ridge, Tennessee (1965).
(13) L. Helmholz and R.F. Kruh, J. Am. Chem. Soc., 74, 1176 (1952).
(14) B. Morosin and E.C. Lingafelter, J. Phys. Chem., 65, 50 (1961).

Inorganica Chimica Acta | 5:2 | June, 1971

	[N(CH ₃),]2CuCl ₄						
	Cs₂CuCl₄	[010] data	[001] data	DMA ₃ CuCl ₅			
Cu-Cl(1)	2.229	2.18Å	2.22Å	2.28Å			
Cu-Cl(2)	2.229	2.25	2.20	2.24			
Cu-Cl(3)	2.232	2.18	2.23	2.23			
Cl(1)-Cu-Cl(2)	136.1	124.9°	129.8°	131.5°			
Cl(1)-Cu-Cl(3)	97.7	102.5	99.6	99.4			
Cl(2)-Cu-Cl(3)	98.6	102.9	102.2	101.5			
Cl(3)-Cu-Cl(3')	135.5	123.3	127.1	127.4			

Table VI. Bond Lengths and Angles in the CuCl4²⁻ Ion

standard deviation. The bond angles fall into two groups, one in which the two angles are compressed from idealized tetrahedral angles to approximately 98°, while in the other group the two angles have opened up to 136°. The two larger angles are equal within three standard deviations at $136.1\pm0.2^{\circ}$ and $135.5\pm$ 0.2° . The two shorter angles lie outside of the three standard deviation criteria, the observed values being $97.7\pm0.1^{\circ}$ and $98.6\pm0.1^{\circ}$. The center of mass of the $CuCl_4^{2-}$ ion is displaced 0.011 Å from the copper atom in the direction of the bisector of the Cl(4)-Cu-Cl(4') bond angle.

Comparison of the configuration of the CuCl₄²⁻ ion in Cs₂CuCl₄ and $[(CH_3)_4N]_2CuCl_4$ with that in DMA₃-CuCl₅, given in Table VI, shows that the CuCl₄²⁻ ion in DMA₃CuCl₅ is closest to D_{2d} symmetry. This is the symmetry expected if the ion is considered to be distorted from T_d symmetry by a Jahn-Teller mechanism or from D_{4h} symmetry by coulombic and Van der Waal's repulsion forces between the chloride ions. Thus one is tempted to infer that the interionic steric forces are smaller in DMA₃CuCl₅ than in the other two compounds.

In the two independent DMA ions, all four C-N distances are within three standard deviations of the accepted C-N single bond distance of 1.47 Å. Although standard deviations are quite high (.03 or .04 Å) and the individual C-N distances range from 1.37 to 1.54 Å, the average C-N distances is 1.44 Å. Both C-N-C bond angles are larger than the tetrahedral value of 109.4 Å. The angle for the DMA ion located in general position, C(6)-N(7)-C(8), is considerably larger at $121.3 \pm 0.6^{\circ}$. In the disordered DMA ion, this angle is $112.9 \pm 2.8^\circ$. The large standard deviation probably arises from the fact that in the least squares refinement the two carbon atoms were restricted to lie on the mirror plane although this is not required for a disordered molecule. The final difference Fourier gave no indication of significant displacement of either of these carbon atoms from the mirror plane, nor did it give definitive evidence about the location of the hydrogen atoms.

Another important aspect of the structure is the disorder found for one of the DMA ions and the lattice chloride ion. The cause of the disordering is easily understood when the hydrogen bonding in the structure is examined. If N(11) were located on the mirror plane and Cl(5) on the center of inversion, the N-Cl distance would be over 4.0 Å, much too long for hydrogen bonding. In addition, the C-N-Cl an-

gles would not be favorable for hydrogen bonding. By tipping the DMA ion away from the mirror plane and displacing the chloride ion toward the DMA ion as shown in Figure 4, a N-Cl distance of 3.19 Å is obtained, a distance that is quite representative of N----Cl hydrogen bond distances. At the same time, the C(9)-N(11)-Cl(5) and C(10)-N(11)-Cl(5) bond angles now reach values (109 and 106° respectively) that will yield a nearly linear N-H---Cl hydrogen bond. This tipping of the DMA ion also produces favorable bond angles for the hydrogen bond from N(11) to Cl(2). The disorder thus allows this DMA ion to form stronger hydrogen bonds than the DMA

Figure 4. Schematic Illustration of Two Possible Hydrogen Bonding Arrangements for the Disordered Chloride and Dimethylammonium Ions.

ion in general positions, as evidenced by shorter N-Cl distances and C-N-Cl angles closer to 109°. This disorder is almost certainly of the dynamic type. Preliminary differential thermal analysis indicated two minor phase pransitions below room temperature, one of which may be due to the onset of some type of hindered rotation of the methyl groups while the other is presumably associated with an order-disorder phenomena in the DMA --- Cl hydrogen bond system. Preliminary broadline NMR spectra support this conclusion. The DMA ion in general position forms a bifurcated hydrogen bond to Cl(3) and Cl(4) with N-Cl distances of 3.29 and 3.24 Å. The hydrogen bond from this DMA ion to the lattice chloride ion is much weaker, the N(7)–Cl(5) distance being 3.45 Å.

Acknowledgments. This research work was supported, in part, by PRF Grant No. 3152-A3.